Post

LangChain An Advanced Framework for Modular LLM Applications

Introduction

LangChain is one of the most widely used frameworks for building applications powered by large language models (LLMs). It provides a flexible way to compose processing chains, integrate memory, knowledge bases, intelligent agents, and external tools to create powerful conversational applications.

This article presents an in-depth look at LangChain: its core concepts, architecture, real-world use cases, third-party integrations, development best practices, and performance considerations.

1. LangChain Architecture

LangChain is based on modular components that can be interconnected to build chains and agent workflows tailored to LLM-based solutions.

Key modules:

  • LLM & ChatModel: Interfaces for calling OpenAI, Claude, Azure, Cohere, HuggingFace, etc.
  • PromptTemplate: Dynamic prompt generation.
  • Chains: Sequential processing units (e.g., RetrievalQA, MapReduceChain).
  • Tools: Callable functions for agents (API calls, calculations, search, etc.).
  • Agents: Decision-making entities that dynamically select tools.
  • Memory: Storage for conversational state (buffer, vector DB, etc.).
  • Retrievers: Access to non-parametric knowledge via vector databases.
  • OutputParser: Controls and structures model outputs.

2. Processing Chains

LangChain offers various chains adapted to common LLM tasks:

a. Simple LLMChain

1
2
3
4
5
6
7
8
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain

prompt = PromptTemplate.from_template("Summarize the following text: {text}")
llm = OpenAI(temperature=0)
chain = LLMChain(prompt=prompt, llm=llm)
result = chain.run(text="This is a long document...")

b. RetrievalQA

A chain that enables retrieval-augmented generation (RAG).

1
2
3
4
5
6
7
8
from langchain.chains import RetrievalQA
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings

vectorstore = FAISS.load_local("docs_index", OpenAIEmbeddings())
retriever = vectorstore.as_retriever()
qa_chain = RetrievalQA.from_chain_type(llm=OpenAI(), retriever=retriever)
qa_chain.run("What is the refund process?")

3. Intelligent Agents

LangChain allows the creation of autonomous agents that reason and use tools.

a. Zero-shot Agent

1
2
3
4
5
6
7
from langchain.agents import load_tools, initialize_agent
from langchain.llms import OpenAI

llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent="zero-shot-react-description")
agent.run("How many days are there between June 8 and today?")

b. Custom Tools

1
2
3
4
5
def convert_currency(params):
    return f"Conversion: {params['amount']} EUR = ... USD"

from langchain.tools import Tool
my_tool = Tool.from_function(name="CurrencyConverter", func=convert_currency)

4. Vector Store Integration

LangChain supports FAISS, Pinecone, Weaviate, Chroma, Qdrant, Milvus, etc.

1
2
3
4
5
6
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()
chroma = Chroma.from_documents(docs, embeddings)
retriever = chroma.as_retriever()

5. Memory Management

1
2
3
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory()
chain = LLMChain(llm=OpenAI(), prompt=prompt, memory=memory)

Other memory types include:

  • ConversationSummaryMemory
  • VectorStoreRetrieverMemory
  • ConversationTokenBufferMemory

6. Observability & Debugging

LangChain provides:

  • LangSmith for tracing prompts, chains, inputs/outputs
  • Custom callbacks (stdout, log files, cloud)
  • Verbose mode per component

7. Advanced Use Cases

a. Customer Support Assistant with Vector FAQ

  • PDF or internal data ingestion
  • FAISS indexing
  • RetrievalQA with question reformulation

b. Information Extraction

  • Custom prompt + OutputParser
  • Useful for receipt parsing, invoice processing, etc.

c. Multi-hop Chains (MapReduceChain)

  • Document-level summaries → final aggregation

8. Best Practices

  • Use PromptTemplate to structure prompt logic
  • Use OutputParser to enforce structured outputs (e.g., JSON, CSV)
  • Separate RAG logic (retrieval) from reasoning logic (LLM)
  • Build reusable toolkits
  • Log with LangSmith and callbacks

9. Limitations

  • Less suited for complex control logic or branching (use LangGraph)
  • Limited built-in support for parallelism
  • Strong dependency on hosted LLMs

Conclusion

LangChain is an essential framework for any developer working with LLMs. Its strength lies in modularity, ecosystem integrations, and a strong developer community. For simple to moderately complex applications, LangChain enables fast and scalable production deployments.

This post is licensed under CC BY 4.0 by the author.